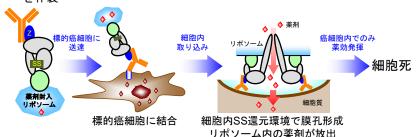


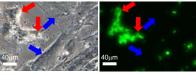
細菌に由来する生理活性物質の包括的研究

[細菌, 毒素, 酵素, DDS, 検査システム] 教授 長宗秀明

1. 細菌の生理活性物質の検索とその構造・機能研究

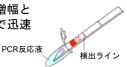
病原性細菌が生産するCDCなどの毒素や酵素の解析を行い、病原性発揮の分子メカニズムを解明し、感染症の予防や治療に寄与する情報を得る。




2. 安全かつ高効率の癌治療用DDSに応用

(例) CDCの分子解析結果に基づいて、抗体等の標的化分子を連結可能なモジュールを持ち、さらに標的細胞内に輸送された後でのみ活性を発揮するように安全性を持たせる改造を施したナノサイズのバイオツールを作製

, CDCの一種 インターメディリシン



抗CEA-CDC改変体による蛍光リポソームの癌細胞標的化 赤矢印:ヒト肝癌細胞HepG2. 青矢印:ヒト線維芽細胞

3. 病原微生物同定用のPCRイムノクロマトシステムの開発

様々な病原微生物の特徴的遺伝子をPCRにより増幅と同時に標識化を行い、これをイムノクロマト紙で迅速に検出する。

内容:

細菌は生育環境や宿主体内において、それが増殖する過程で様々な毒素・酵素・代謝産物といった生理活性物質を生産する。我々は、(1)その構造と機能の研究を通してそれらを生産する細菌の病原性の解明や、それら生理活性物質の有効利用法の開発を進めている。

(2) 例えばコレステロール依存性細胞溶解毒素(CDC)や細胞壁ペプチド転移酵素の分子特性を詳細に調べ、必要な機能と安全性を合わせ持つよう遺伝子工学的に改造を施したバイオツールを作製し、抗癌剤を封入した癌治療用リポソームにそれらを用いて癌指向性分子を転移あるいは結合させて標的細胞に特異的かつ安全にリポソーム送り届け、細胞内でのみ抗癌剤を放出させるDDSの開発などを行っている。(3) また骨粗鬆症の予防や治療への利用が期待されている大豆イソフラボンの細菌代謝産物エクオールが示す強い骨形成促進作用の分子機構の解析とその応用技術の研究や、病原微生物の特徴的な遺伝子に着目したPCRイムノクロマト技術による低コストかつ迅速な感染症検査法や食品汚染・環境モニタリングシステムの開発も推進している。

分野:医歯薬学

専門:微生物学

E-mail: nagamune@bio.tokushima-u.ac.jp

Tel. 088-656-7525

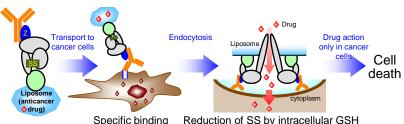
Fax: 088-656-7525

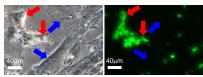
HP: http://www.bb.tokushima-u.ac.jp

BIOINDUSTRY

Comprehensive Research on Bacterial Bioactive Molecules Professor Hideaki Nagamune

1. Search and characterization of BBM


To clarify the molecular mechanism of pathogenicity of pathogenic bacteria and to overcome the infectious diseases, molecular investigations on BBM such as CDC are proceeding.


2. Application: anti-cancer DDS by CDC variants

(Example) Based on the findings in CDC investigations, CDCs were remodeled as the variants for nano-biotool of DDS with a module for fixation of cancer-targeting molecule and controlled toxicity *in vivo*.

ing Reduction of SS by intracellular GSH Release of drug into cytoplasm

Targeting of fluorescent liposomes to cancer cells by an anti-CEA-CDC variant Red arrow : HepG2 cell, Blue arrow : Human normal fibroblast

3. PCR immunochromatography for pathogen detection

After amplification and simultaneous labeling of marker gene(s) for various pathogens, the amplicon(s) is detected by immunochromatostrip within 10 min.

Content:

Bacteria produce various bacterial bioactive molecules (BBM) such as toxins, enzymes, chaperones, and small metabolites on their growth stage in the habitat/host. Our main interest is on these BBM in the aspects of understanding of pathogenicity and their application for medical and industrial fields. We currently investigate Gram-positive BBM. For example, we searched cytolysins as oral streptococcal virulence factors, discovered unique cholesterol-dependent cytolysins (CDC) with specificity and directivity to human cells (intermedilysin from S. intermedius and Sm-hPAF from S. mitis, respectively) and twin peptide cytolysins (i.e., streptolysin S of S. anginosus), and characterized them. Our team is continuing further investigations on their molecular action mechanism, regulation of gene expression and roles in pathogenicity. Moreover, development of DDS for anticancer treatment is also proceeding by using nano-biotool: CDC variants designed to have cancer-targeting module and controlled toxicity only in intracellular condition. We are also promoting development of inexpensive and rapid PCR immunochromatography system for diagnosis and for hygiene control in food processing and medical facilities.

Keywords: bacteria, toxin, enzyme, DDS,

diagnosis system

E-mail: nagamune@bio.tokushima-u.ac.jp

Tel: +81-88-656-7525

Fax: +81-88-656-7525

HP: http://www.bb.tokushima-u.ac.jp

